Time Complexity of Recursive Algorithms

Mohammed Yaseen Mowzer

April 11, 2014

Definitions

The asymptotic tight bound
O(g(n)) =f(n) <= Fa3cxVn > ng s.t. 0 < c1g9(n) < f(n) < cag(n)
The asymptotic upper bound
O(g(n)) = f(n) <= JaVn > ny s.t. 0 < c19(n) < f(n)
The asymptotic lower bound

Qg(n)) = f(n) <= JaVn>ngst. 0< f(n) < crg(n)

Mergesort

Divide Divide the n-element sequence to be sorted into two
subsequences of n/2 elements each.

Conquer Sort the two sequences recursively using mergesort.

Combine Merge the two sorted sequences to produce the
answer.

The General Recurrence Relation

v

We can define the time complexity in terms of a recurrence
relation.

v

If we conquer a problems of size n/b

v

If D(n) is the time taken to divide the problem

v

If C(n) is the time take to combine the problem
T(n)=aT(n/b)+ D(n)+ C(n)

Recurrence for Mergesort

» We conquer 2 problems of size n/2
» The time it takes to divide the sequence is constant O(1)

» The time it takes to combine the problem is ©(n)

T(n) = 2T(n/2)+06(1)+ 6(n)
T(n) = 2T(n/2)+ 6(n)

because a linear function plus a constant function is a linear
function.

Methods for Finding the Time Complexity

Recursion-tree method Convert the recurrence into a tree whose
nodes represent the costs incurred at various levels of
the recursion.

Subsitution method Guess a bound then prove it with
mathematical induction.

Master method provides bounds for any recurrence of the form

T(n) = aT(n/b) + f(n)

Substitution method

T(n) = 2T(n/2)+ 6(n)

T(n) = 2T(n/2)+ cn

T(n) = 2T(n/2)+n

T(n) = n+2(n/2+2T(n/4))

T(n) = n+n+4(n/4+2T(n/8))
T(n) = n+n+n+8(n/8+2T(n/16))

We can guess that T'(n) = O(nlog(n))

Induction

Assume T'(|n/2]) = O(nlogn)

T(n) < 2T(|n/2])+n

T(n) = 20(|n/2]log|n/2])+n
T(n) = 2¢c|n/2]log|n/2]+n
T(n) < ecnlogn/2+n

T(n) = ecnlogn—cnlog2+n
T(n) = cnlogn—cn+n

T(n) < cnlogn

T(n) = O(nlogn)

Induction must be Precise

Suppose you had the recurrence
T(n) = T([n/2]) + T([n/2]) +1

We can guess that the time complexity is 7'(n) = O(n). We are
required to show that 7'(n) < cn for some c.

T(n) < ¢|n/2]+¢c[n/2]+1
T(n) = cen+1

This does not satisfy the induction. We cannot drop the +1 in this
case.

Assume Stronger Induction Hypothesis

Assume T'(k) < ck — d for some k. We now need to prove
T(n)<cn—d

T(n) < (cln/2] =d)+(c[n/2] —d)+1
= en=2d+1
< en—d

Which is what we were required to prove.

The Master Method

The master method can be used to solve all recurrences of the form
T(n)=aT(n/b)+ f(n)

where a > 1 and b > 1.
The master method consists of three cases.

The Master Theorem

Let @ > 1 and b > 1 be constants, let f(n) be a function, and let
T(n) be defined on the nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n)
where n/b is either [n/b| and [n/b]. Then T(n) has the
following asymptotic bounds:
1. If f(n) = O(n'°8+(®)=2) for £ > 0, then T'(n) = O(n'°%)
2. If f(n) = ©(n'°8:(%)) then T(n) = O(n'°2 *log, n)
3. If f(n) = Q(nlo#s(a)+€) for ¢ > 0 and if af(n/b) < cf (n) for

some constant ¢ < 1 and all sufficiently large n, then

T(n) = 0O(f(n))

Limitations on the master theorem

» In case 1 f(n) is not just asymptotically smaller it is
polynomially smaller than n'°g: @

» In case 3 f(n) is not just asymptotically larger it is
polynomially larger than n'°: @

» The master theorem fails when f(n) is smaller than n'°%: ¢ but
not polynomially smaller.

» The master theorem fails when f(n) is larger than n!°8 @ but
not polynomially larger.

» The master theorem fails when the regularity condition for
case 3, af(n/b) < ¢(f(n)), does not hold.

Using the master method

T(n)=9T(n/3)+n

Soa=9,b=3, f(n) =
O(nlo8s %) = O(n'°89) = O(n?). So f(n) = O(n®

This is case 1 of the master theorem. So T'(n) =

)
O(n?)

Using the master method

T(n)=T(2n/3)+1

Soa=1,b=3/2 f(n)=1
O(n'°8r @) = O(n'83/21) = O(n). So f(n) = O(1)
This is case 2 of the master theorem. So T'(n) = O(logy(n))

Using the master method

T(n)=3T(n/4) + nlogyn
Soa=3,b=4, f(n)=1
O(nlo8s %) = O(nlo813) = O(n°.793). So f(n) = Q(n793+e)

af (n/b) = 3(n/4)loga(n/4) < (3/4)nlogy(n) = cf(n) for ¢ = 3/4
This is case 3 of the master theorem. So T'(n) = O(nlogy(n))

Using the master method

T(n)=2T(n/2)+ nlogyn

Soa=2,b=2, f(n)=nlogyn

O(nl°&v @) = O(n)

This satisfies none of the conditions, since f(n) is asymptotically
bigger than n so it will not satisfy case 1 or 2 but it is not

polynomially bigger so it will not satisfy case 3. So the master
method does not apply.

Bibliography

Thomas H. Corman, Introduction to alogorithms, Ch. 3, 4

