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Definitions

The asymptotic tight bound

Θ(g(n)) = f (n) ⇐⇒ ∃c1∃c2∀n ≥ n0 s.t. 0 ≤ c1g(n) ≤ f (n) ≤ c2g(n)

The asymptotic upper bound

O(g(n)) = f (n) ⇐⇒ ∃c1∀n ≥ n0 s.t. 0 ≤ c1g(n) ≤ f (n)

The asymptotic lower bound

Ω(g(n)) = f (n) ⇐⇒ ∃c1∀n ≥ n0 s.t. 0 ≤ f (n) ≤ c1g(n)



Mergesort

Divide Divide the n-element sequence to be sorted into two
subsequences of n/2 elements each.

Conquer Sort the two sequences recursively using mergesort.
Combine Merge the two sorted sequences to produce the

answer.



The General Recurrence Relation

I We can define the time complexity in terms of a recurrence
relation.

I If we conquer a problems of size n/b
I If D(n) is the time taken to divide the problem
I If C(n) is the time take to combine the problem

T (n) = aT (n/b) + D(n) + C (n)



Recurrence for Mergesort

I We conquer 2 problems of size n/2
I The time it takes to divide the sequence is constant Θ(1)
I The time it takes to combine the problem is Θ(n)

T (n) = 2T (n/2) + Θ(1) + Θ(n)
T (n) = 2T (n/2) + Θ(n)

because a linear function plus a constant function is a linear
function.



Methods for Finding the Time Complexity

Recursion-tree method Convert the recurrence into a tree whose
nodes represent the costs incurred at various levels of
the recursion.

Subsitution method Guess a bound then prove it with
mathematical induction.

Master method provides bounds for any recurrence of the form

T (n) = aT (n/b) + f (n)



Substitution method

T (n) = 2T (n/2) + Θ(n)
T (n) = 2T (n/2) + cn
T (n) = 2T (n/2) + n
T (n) = n + 2(n/2 + 2T (n/4))
T (n) = n + n + 4(n/4 + 2T (n/8))
T (n) = n + n + n + 8(n/8 + 2T (n/16))

We can guess that T (n) = O(n log(n))



Induction

Assume T (bn/2c) = O(n log n)

T (n) ≤ 2T (bn/2c) + n
T (n) = 2O(bn/2c logbn/2c) + n
T (n) = 2cbn/2c logbn/2c+ n
T (n) ≤ cn log n/2 + n
T (n) = cn log n − cn log 2 + n
T (n) = cn log n − cn + n
T (n) ≤ cn log n
T (n) = O(n log n)



Induction must be Precise

Suppose you had the recurrence

T (n) = T (bn/2c) + T (dn/2e) + 1

We can guess that the time complexity is T (n) = O(n). We are
required to show that T (n) ≤ cn for some c.

T (n) ≤ cbn/2c+ cdn/2e+ 1
T (n) = cn + 1

This does not satisfy the induction. We cannot drop the +1 in this
case.



Assume Stronger Induction Hypothesis

Assume T (k) ≤ ck − d for some k. We now need to prove
T (n) ≤ cn − d

T (n) ≤ (cbn/2c − d) + (cdn/2e − d) + 1
= cn = 2d + 1
≤ cn − d

Which is what we were required to prove.



The Master Method

The master method can be used to solve all recurrences of the form

T (n) = aT (n/b) + f (n)

where a ≥ 1 and b > 1.
The master method consists of three cases.



The Master Theorem

Let a ≥ 1 and b > 1 be constants, let f (n) be a function, and let
T (n) be defined on the nonnegative integers by the recurrence

T (n) = aT (n/b) + f (n)

where n/b is either bn/bc and dn/be. Then T (n) has the
following asymptotic bounds:

1. If f (n) = O(nlogb(a)−ε) for ε > 0, then T (n) = Θ(nlogb a)
2. If f (n) = Θ(nlogn(a)) then T (n) = Θ(nlogb a log2 n)
3. If f (n) = Ω(nlogb(a)+ε) for ε > 0 and if af (n/b) ≤ cf (n) for

some constant c < 1 and all sufficiently large n, then
T (n) = Θ(f (n))



Limitations on the master theorem

I In case 1 f (n) is not just asymptotically smaller it is
polynomially smaller than nlogb a

I In case 3 f (n) is not just asymptotically larger it is
polynomially larger than nlogb a

I The master theorem fails when f (n) is smaller than nlogb a but
not polynomially smaller.

I The master theorem fails when f (n) is larger than nlogb a but
not polynomially larger.

I The master theorem fails when the regularity condition for
case 3, af (n/b) < c(f (n)), does not hold.



Using the master method

T (n) = 9T (n/3) + n

So a = 9, b = 3, f (n) = n
O(nlogb a) = O(nlog3 9) = O(n2). So f (n) = O(n2−ε)
This is case 1 of the master theorem. So T (n) = Θ(n2)



Using the master method

T (n) = T (2n/3) + 1

So a = 1, b = 3/2, f (n) = 1
O(nlogb a) = O(nlog3/2 1) = O(n0). So f (n) = Θ(1)
This is case 2 of the master theorem. So T (n) = Θ(log2(n))



Using the master method

T (n) = 3T (n/4) + n log2 n

So a = 3, b = 4, f (n) = 1
O(nlogb a) = O(nlog4 3) ≈ O(n0.793). So f (n) = Ω(n0.793+ε)
af (n/b) = 3(n/4)log2(n/4) ≤ (3/4)n log2(n) = cf (n) for c = 3/4
This is case 3 of the master theorem. So T (n) = Θ(n log2(n))



Using the master method

T (n) = 2T (n/2) + n log2 n

So a = 2, b = 2, f (n) = n log2 n
O(nlogb a) = O(n)
This satisfies none of the conditions, since f(n) is asymptotically
bigger than n so it will not satisfy case 1 or 2 but it is not
polynomially bigger so it will not satisfy case 3. So the master
method does not apply.
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